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that for the linear combinations given by equation (3) 
only those which yield the least difference between f~ 
and./~ are in general acceptable. 

The next step is to establish the true set of numbers 
which corresponds to the two lines selected initially. 
This is achieved by testing all sets in the above group 
in accordance with the 'equivalence' property defined 
by (7) and (8). Using the values of m~,n~ obtained 
previously, equation (4) gives fractional values of y~ 
for the first three sets, which is inadmissible. Of the 
remaining sets only 1°41 fits the data for the hexagonal 
system in Table 1 and also yields a collection of inte- 
gers x~ y~ that do not contain a common integral fac- 
tor. The substance under investigation thus belongs to 
the hexagonal system and for the first two lines, x~ = 0, 
Yl = 4 and x2 = 1, Y2 = 0. The values of hkl for each line 
are then obtained from Table 1. xi,y~ and hkl are given 
in columns 6, 7 and 8 of Table 4. 

Conclusion 

Neskuchaev's method for indexing powder patterns, 
incorporating the rationalization suggested above, not 
only becomes more general, but also simpler than other 
methods employed for systems of intermediate sym- 
metry. The method is therefore recommended as the 
principal one for patterns in this symmetry range, and 

as a subsidiary one for patterns of low symmetry. 
In the latter case, it is possible to establish that the 
substance under investigation belongs to a low- 
symmetry system, thus simplifying the application 
of more general methods of indexing (Ito, 1949, 
1950; Peiser, Rooksby & Wilson, 1955; Az~iroff & 
Buerger, 1961). 

The authors are much indebted to Dr J. I. Langford, 
Department of Physics, The University, Birmingham, 
England for assistance with the preparation of the 
English text. 

References 

AZ,~ROFF, L. V. & BUERGER, M. J. (1958). The Powder 
Method in X-ray Crystallography, pp. 106-123. New 
York: McGraw-Hill. 

ITO, T. (1949). Nature, Lond. 164, 755. 
ITO, T. (1950). X-ray Studies on Polymorphism, pp. 187-228. 

Tokyo: Maruzen. 
MIRKIN, L. I. (1964). Handbook of X-ray Analysis of Poly- 

crystalline Materials (translation by Bradley, J.E.S.), 
pp. 237, 254, 272. New York: Consultants Bureau. 

N.B.S. Circular No.539 (1953). 1, 16. 
NESKUCHAEV, V. (1931). Zh. tekh. Fiz. 1, 105. 
PEISER, H. S., ROOKSBY, H. P. & WILSON, A. J. C. (1960). 

X-ray Diffraction by Polycrystalline Materials, pp. 350- 
365. London: Institute of Physics. 

Acta Cryst. (1967). 23, 9 

Parameter Errors in Polar Space Groups Caused by Neglect of Anomalous Scattering 
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A simple formula is given for the atomic coordinate error when d f "  is neglected. With Cu K~ radiation 
the effect is important for most elements and can reach 0.08 A. 

1 

Ueki, Zalkin & Templeton (1966) have recently pointed 
out the serious coordinate errors which can result from 
the neglect of the imaginary component Af" of the 
anomalous scattering in the ten polar point groups. In 
these groups the position of the origin in one or more 
dimensions is not fixed by reference to symmetry ele- 
ments. In Ueki's example of thorium nitrate penta- 
hydrate, space group Fdd2, Mo Kc~ radiation, the 
neglect of A f " =  9 for thorium caused an error of about 

0"05 A in the z coordinate of Th relative to those of 
the lighter atoms. 

In the present note we consider the problem further 
and in particular point out that the serious conse- 
quences of the neglect of Af"  are not confined to heavy 
elements. As we have remarked elsewhere (McDonald 
& Cruickshank, 1967) the effect of the inclusion, with 
Cu Ke radiation, of Af"=  0.6 for the S atoms in S309, 
space group P21nb, was to produce changes of 0-02 A 
in some bond lengths. 

2 

* Present address: Chemistry Department, University of 
Manchester Institute of Science and Technology, Sackville 
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I" Present address: Chemistry Department, University of 
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For a centrosymmetric crystal the relation IF(hkl)l = 
IF(hfd)l holds by virtue of the symmetry. For a non- 
centrosymmetric crystal the same relation is true, pro- 
vided Af"  is negligible (Friedel's law). In consequence 
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with non-centrosymmetric crystals it is often the prac- 
tice to measure, either directly or inferentially with the 
aid of the symmetry, the reflexions in only half the 
accessible volume of reciprocal space. In P 1 the meas- 
ured reflexions will thus lie in a hemisphere (say with 
I non-negative). 

The contribution of any atom to a structure factor 
is proportional to 

exp[i(2nh, x + ~0)], (1) 

where ~0 = Af"l l f l  is the phase shift due to anomalous 
scattering. As Ueki et al. remark, the fact that Af"  
is positive always makes the atom seem to lie in front 
of the plane with normal h passing through its true 
position. In P 1, if the measurements are made for the 
l non-negative hemisphere, there will be no first-order 
errors in x and y coordinates from an uncorrected least- 
squares or electron-density calculation. However, there 
will be a systematic error in the z coordinate, since 
part of the phase shift can be simulated by an apparent 
change in z. The magnitude in A, of this error Az is 
governed by 

2~l(z + Az)/e= 2~lz/c + ~o , (2) 
so that 

Az=cl2~ (WI>, (3) 

where the brackets denote an effective weighted aver- 
age over all reflexions, the details of which will depend 
on the method of refinement, the least-squares weights 
and the vibration parameters (see e.g. Fig. 1 of Cruick- 
shank, 1960). For an order-of-magnitude approxima- 
tion we may take c(1/l)=2/Smax, so that 

1 
Z~g-- ( ~ ) S =  ½Sma x (4) 7ZSmax 

where s = 2  sin 0/2 and the phase shift (o is evaluated 
at ½Smax, with Smax the effective limit for measurement 
in the particular problem. 

Fig. 1 shows Az as a function of the atomic number Z 
for both Cu and Mo Ks radiation. For Cu Smax was 
taken as 1.2 A-1 (geometrical limit 1.3 A,-0, and for 
Mo 1-6 A_ -1 (geometrical limit 2.8 A-l). The calcula- 
tions were based on theJ~, Af' and Af" values given in 
International Tables for X-ray Crystallography (1962), 
with some assistance from Cromer (1965). The main 
difference between the two sets of results is that the 
peaks associated with the various absorption edges are 
shifted to higher Z values with Mo radiation. The 
reduced maximum shifts for Mo are due to the assump- 
tion of a higher Smax than for Cu. 

It can be seen that the errors with Cu radiation reach 
0.06 A at Co ( z=27 ) ,  fall to 0.01 A, for 28Ni, rise to 
0.08 A for 64Gd, fall to 0"025 A for 67Ho and rise again 
to 0.08 A by the end of the periodic table. With Mo 
radiation and the assumed value of Smax the errors 
reach maxima of 0.04 A_ at 39Y and 0.05 A_ at 84Po. If 
we suppose that the maximum error which can be 

tolerated in a precision structure analysis is 0.005 A, 
we see that for polar space groups the neglect of Af"  
is only justifiable if the structure contains no elements 
heavier than oxygen with Cu radiation or sulphur with 
Mo radiation. The error for carbon with Cu radiation 
is 0.003 A. 

We have checked the order-of-magnitude formula (4) 
against the exact shifts in several problems and have 
found agreement to within 25yo. Fig. 1 is not neces- 
sarily satisfactory in individual cases as the appro- 
priate values of Smax may not be those assumed in our 
calculations. 

4 

We now consider coordinate errors in non-centrosym- 
metric space groups other than P 1. Those in the class 
2 (b axis unique) will be liable to errors Ay if the data 
are for non-negative k. With the non-polar class 222 
the data are usually collected with all indices non- 
negative, so that by symmetry the data give the effects 
of the hkl, hfd, hki and hkl reflexions. A tetrahedral 
arrangement of the spherical octants is thus involved, 
and since every index has both positive and negative 
values there will be no first-order errors in the coor- 
dinates. 

This tetrahedral arrangement of octants can also be 
obtained in the class 2 if the hkl and h[~l data are meas- 
ured, and for P 1 if hkl, hfd, hki and hfcl are measured. 
In these cases there will be no first-order coordinate 
errors. In class m (b axis unique) the error can be Ax 
or Az according to whether the measurements are for 
h or l non-negative. As listed by Templeton (1960) the 
other polar point groups are mm2, 4, 4mm, 3, 3m, 6 
and 6mm. In these the neglect of Af"  can lead to co- 
ordinate errors in the direction of the rotation axis. 
[It may be noted that the polar groups are those in 
which the piezoelectric effect can occur by hydrostatic 
pressure alone (Buerger, 1956)]. 
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Fig. 1. Typical coordinate errors due to neglect of Af'" in polar 
space groups. Full line: Cu Ks radiation. Broken line: 
Mo K0c radiation. 
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In the centrosymmetric space group P i  the symmetry 
implies the measurement of both the hkl and hki re- 
flexions. The apparent shifts Ar will be in opposite di- 
rections h and - h ,  so that there will be no net co- 
ordinate error. However, the atom will appear to be 
smeared out. Averaging over a sphere of constant s = 
½Smax (for which Ar will be also constant), the mean 
value of AIz[, say, will be Ar/2=~o/(2nSmax). Thus the 
apparent increase in the isotropic mean-square vibra- 
tion amplitude of the atom will be roughly A U= 
(Az/2) 2, where Az is given by (4). In the bad case of 
Az=0.08 A, AU=0.0016 A 2. This will be usually in- 
significant. 

In a polar space group the coordinate shift, Az say, 
will take up most of the U33 component of A U, to- 
gether with a part of the Ull and U22 components. 

For many elements the neglect of Af' will have more 
serious effects on vibration parameters than the neglect 
of Af", but this is easily taken care of by simple changes 
in the real part off .  

6 

So far we have considered the effects of the neglect of 
Af", but a still worse situation arises if Af"  is allowed 
for and the structure model is the inverse ( - x )  of the 
true structure (x). In this case, quite apart from having 
the inverse configuration, the anomalous atoms in 
polar space groups will have relative coordinate errors 
twice as large as indicated by equations (3) and (4). 
This can be seen as follows. The refinement processes 
endeavour to produce IF~(h)l for the inverse structure 
which equal the IFt(h)l of the true structure. Using 
IFt(h)l = IF;"(h)l, we notice 

IFt(h)l = I-r exp{i[2nh, x + (0]}1 
= IS exp{-  i[2nh, x + ¢]}1 
= I S  exp{i[2nh. ( -x ) -~0]}[ .  (5) 

Hence an exact fit could be obtained if the inverse 
structure had phases -~0. Since the refinement calcula- 
tions actually take the phase shifts to be + ~0, the equa- 
tion corresponding to (2) which governs the simulated 
shifts Az is 

2nl(z + Az)/c + ~o = 2nlz/c-  ~o . (6) 

Thus Az is twice as large as in equations (3) and (4). 

In the case of a structure in the non-polar class 222, 
at the end of the refinement to the false minimum, the 
anomalous atoms will not be displaced relative to the 
others, but their vibration amplitudes will be too large 
by roughly A U=(Az) 2, where Az is given by (4). (In 
222 and other non-centrosymmetric classes not con- 
taining mirror planes, the inverse structure will of 
course be of opposite absolute configuration to the 
true structure). 

As indicated by Hamilton (1965) the model with the 
inverse configuration will refine to a slightly higher 
residual than the true model, and, even when only half 
the accessible data are used, the slight difference in 
residual can be used to distinguish the true configura- 
tion. 

7 

In conclusion we note that for polar space groups the 
error from the neglect of Af"  can easily be more im- 
portant than the well-known systematic errors due to 
finite-series or rotational effects. Equation (4) is only 
a guide to the size of the error. The proper way of 
dealing with it is to include Af"  in the calculated struc- 
ture factors used in the refinement. Our study also 
indicated that there is a need for more accurate and 
extensive tables of Af' and Af"  as functions of sin 0/2 
than those currently available. 

Note added in publication. Zalkin, Hopkins & 
Templeton (1966) have recently introduced the very 
appropriate name polar dispersion error for the co- 
ordinate error caused by neglecting Af"  in polar space 
groups. 

References 

BtrERGER, M. J. (1956). Elementary Crystallography. New 
York: John Wiley. 

CROMER, D. T. (1965). Acta Cryst. 18, 17. 
CRUICKSHANK, D. W. J. (1960). Acta Cryst. 13, 774. 
HAMILTON, W. C. (1965). Acta Cryst. 18, 502. 
International Tables for X-ray Crystallography (1962). 

Vol. III. Birmingham: Kynoch Press. 
MCDONALD, W. S. & CRUICKSHANK, D. W. J. (1967). 

Acta Cryst. 22, 48. 
TEMPLETON, D. H. (1960). Z. Kristallogr. 113, 234. 
UEKI, T., ZALKIN, A. • TEMPLETON, D. H. (1966). Acta 

Cryst. 20, 836. 
ZALKIN, A., HOPKINS, T. E. & TEMPLETON, D. H. (1966). 

Inorg. Chem. 5, 1767. 


